%%% ******************************************
%%% Hilbert Matrix Analysis: Hilbert.m
%%% ******************************************
%%% MATLAB m-file: Hilbert.m
%%% Date: 26 December 97
%%% Author: Ronald Yannone
%%% For: NOESIS - The Journal of the Mega Society
%%% ******************************************
flag = 1;
if flag == 1
grand_sum = zeros(1,20);
for g = 1:20
grand_sum(g) = sum(sum(sym(hilb(g)))');
endfigure(1)
clf
plot(grand_sum)
grid
title('Sum of all the elements in the nth Hilbert Matrix')
xlabel('Nth Hilbert Matrix')
ylabel('SUM of all Elements in Hilbert Matrix')
polyfit(g,grand_sum,2);
endif flag == 4
gamma = 0.577215664901532860606512; % The Euler-Mascheroni number
true_harm = zeros(1,50); % Place-holder for first 50
appr_harm = zeros(1,50);
true_harm(l) = 1;
appr_harm(l) = log(l) + gamma + 1/(2*1);for k=2:50
true_harm(k) = true_harm(k-1) + 1/k;
appr_harm(k) = log(k) + gamma + 1/(2*k);
endfigure(1)
clf
plot(true_harm)
hold on
plot(appr_harm,lr+')
grid
title('True [solid line] and "approximation to" [+ line] Harmonic Numbers')
xlabel('Kth Harmonic Number')
ylabel('True and Approximate Harmonic NUMBER')
hold offerror = true_harm - appr_harm;
figure(2)
clf
plot(error)
grid title('ERROR: True - Approximation Harmonic Number')
xlabel('Kth Harmonic Number')
ylabel('ERROR')min_error = min(error)
max_error = max(error)
endif flag==3
suml 1 + 1/(7/3) + 1/(101/30);for k = 4:15
hh sym(hilb(k));
hh(2:k-1,2:k-l)=zeros(k-2);
suml = suml + (1/sum(sum(hh)'));
end
end
if flag == 2
d = zeros(1,10);d(l) = det(sym(hilb(l)));
for k=2:11
d(k) = d(k-1) + det(sym(hilb(k)));
end
d(l) det(sym(hilb(l)))
figure(1)
clf
plot(d)
grid
title('Cumsum of Determinant of Hilbert Matrix')% w = zeros(1,20);
% for k=1:20
% k;
% hilb_matrix = sym(hilb(k));
% w(k) = sum(sum(sym(hilb(k))'));
% pretty(w);
% end
% figure(1)
% clf
% plot(w)
% grid
% title('The sum of all elements in the Hilbert Matrix')
% xlabel('Hilbert Matrix of Size N')
% ylabel('Sum of all elements')
end